Commercial Heat Pump Piping Considerations

Single Pass vs. Multi Pass Conceptual Methods

Two Ways to Heat Water with Commercial Heat Pumps

- Both use vapor compression cycle to move heat from air, achieving higher efficiencies
- Their performance varies with changing air and water temperatures
- Both have operating limitations based on temperatures
- All heat pump systems utilize Lower Recovery Rates / Higher Storage Volumes as compared to gas or electric resistance systems
- Both have domestic water pumps to circulate water to external storage tanks
- The difference?!
 - Heat is transferred to the water in different ways
 - THIS CHANGES HOW THEY INTEGRATE INTO SYSTEMS and will be explored in this presentation

Focal Point – Water Side Heat Transfer Differences

Single Pass Heating Characteristics

- Key Characteristic: Has a high domestic water temperature lift matched to a steady output temperature. Aka "High Lift System"
- This is achieved by varying the inlet flow rate to the heat pump to adjust the amount of heat transferred into the domestic water
- Flowrate adjusts based on incoming water temperature
 - Decreasing flow when colder water enters
 - Increasing flow with warmer water
- Can achieve high entering-to-leaving water temperature lifts
 - 100°F temperature rise in one pass through heat pump on natural refrigerant heat pumps, for example
 - Does this at lower flow rates
- Requires a minimum differential between entering and leaving water temperature (i.e. maximum entering water temperature for an output setpoint)
 - Typically, 15-20°F below setpoint

Multi Pass Heating Characteristics

- Key Characteristic: Has a low domestic water temperature lift at a constant flow rate. Aka. "Low Lift System"
- The flowrate is significantly higher for a multi pass system than single pass system (2 to 4 times)
- The outlet temperature varies according to the flow and incoming water temperature
 - Usually between 5 20°F higher than incoming water temperatures
- Multi pass heat pumps can handle varying incoming water temperatures, so long as there is adequate flow
- Final output temperature is limited on multi pass based on refrigerant pressure limits
- Flowrate dictates maximum inlet temperature

Single Pass vs. Multi Pass Storage

• It is important to understand storage methods and how they pair with the two heating methods

• Storage techniques have a direct impact to system performance

Single Pass (Stratified) Storage

Single Pass (Stratified) Storage

- Stratified storage is used to maintain maximum separation between the heated and cold water
- Heating occurs from the top down
- This is different than gas or electric resistance heating and is piped much differently

- Single Pass heat pumps deliver "at temperature" hot water at the top of the tank
- Recovery and draw are from top of the storage tanks
 - A clear delineation between hot and cold water forms
 - The hot stays in tank top and the cold stays in tank bottom
- Less mixing keeps heat pump inlet water temperature colder through heating cycle, maximizing efficiency
- The heat pump is turned off *before* its maximum entering water temperature is exceeded
- Single pass storage allows for longer sustained output temperatures (via stratification) resulting in higher storage efficiency as compared to multi-pass

Single Pass Stratified Tank

- It is important to use tanks designed for use with single pass heat pumps
- These "stratified tanks" have diffusors located at the water inlet and outlet ports
- Diffusors minimize water mixing to help maintain stratification
- Thermowells are also located along the side of the tanks to allow for optimal temperature sensor placement depending on application needs

Multi Pass (Mixed) Storage

COLD	RECOVERY	DRAW
------	----------	------

Multi Pass (Mixed) Storage

- Multi Pass storage is piped similar to traditional volume water heating systems
- Heating occurs at the mid-lower portion of the tanks

- Multi pass heat pumps deliver water at varying temperatures throughout the heating cycle due to small temperature lift
- Multi-pass only delivers the desired water temperature near the end of the heating cycle
- Therefore, the heated water cannot be pumped back in the top of the tank
- It is piped in near the lower third to halfway up the tank
- As the water heats up, the hotter water gradually rises to the top. The tank gradually comes up to temperature as the heat pump adds energy
- Draw results in the entire volume dropping in temperature. First the lower section, but the upper half drops much more quickly than stratified storage
- The inlet water to the heat pump starts out cold but rises gradually over the heating cycle. (Averages out to much higher overall than stratified)
- The heat pump is turned off when it is sensed that the desired storage temperature is reached

Note on Horizontal Tanks

- Horizontal tanks always mix due to the large amount of contact area between the hot and cold water
- They should *never be used* with Single pass heat pumps. Doing so will greatly reduce overall system efficiency and negate the benefits of high lift, single pass heat pumps

Heat Pump Tank Arrangements

- In most commercial applications, multiple tanks are required to achieve the required storage capacity
- They can be arranged in two ways, Series or Parallel, depending on which heating method is used
- Single pass with stratified storage can be arranged in either series or parallel
- Mixed storage must be arranged in parallel
- Both have their own advantages, and applications where they make more sense

Series Tank Single Pass

- Series tanks mimic the performance of one single tall tank
- This allows the total volume of the "hot" tanks to be heated, leaving only the small area near the heat pump supply connections as a gradient
- Advantages:
 - Better storage efficiency (more fully heated volume)
 - Easier to sense multiple points and stage heat pumps
 - More control for load shifting
- Disadvantages:
 - Limited full system flow due to all water going through single connections
 - Removing a tank from service requires temporary piping or adding normally closed bypass lines that have stagnant water

Parallel Tanks, Single Pass

- Parallel tanks allow for higher system volumes because the flow is divided equally across all tank connections.
- Lose some fully heated storage volume across the bottom of tanks.
- Balanced flow is incredibly important to ensure full storage heating or water can bypass.
- Advantages:
 - Higher system flows
 - Easy to remove a tank from service with no special piping
- Disadvantages:
 - Lower storage efficiency
 - All tanks must have a sensor to ensure equal heating
 - Even flow headers can be difficult to build/arrange

Parallel Tanks Multi Pass

 Multi pass heat pumps do not output "at temperature" hot water, therefore they must be piped in a parallel tank configuration

- This is to ensure that low temperature water isn't pumped near the hot outlet, resulting in colder discharge water to the system
- Advantage:
 - Much easier to bring recirculation back to primary storage tanks with no issue

Unit Array Piping

- Multiples of both types of heat pumps are piped in parallel with reverse return headers
- This allows for balance flow and pressure drop across all units
- Any number of the units can run without impacting the others

Single Pass Controls

Single pass control typically uses temperatures at two points.

Rule of Thumb: If the off sensor is close to the heat pump inlet piping the sensor should be at minimum 20°F below heat pump output temperature setpoint. Extra volume does not outweigh loss of efficiency due to hot water returning to heat pump.

- ON Sensor: Hot water drawn until the temperature drops at this sensor. The temperature stays stable until the boundary layer hits that location, then it drop sharply.
- OFF Sensor: Heat pump(s) are energized and run until hot water is recovered back to this sensor. Again, this will be stable at cold temperatures until boundary reaches it, then sharp increase.
- OFF location: temperature entering heat pump must not exceed maximum allowed.
- Setpoint temperatures are not Storage Temperatures. Sensors are just detecting when the boundary layer passes.
- In single pass, because the heat pump is making hot water to set point, the tank sensors are not controlling storage temperature, but rather when to turn on and off.
- The off temperature is typically set lower than setpoint temperature to ensure hot water does not return to the heat pump.
- The closer the off sensor is located to the heat pump inlet piping the lower the sensor setpoint temperature must be (i.e. cannot be higher than inlet temp limit)

Multi Pass Controls

- A sensor is located in the lower 1/3 of tank, above the heat pump water supply connection
- As the temperature at that location drops the heat pumps are staged on
- In multi pass, you must set the off sensor setpoint to the desired tank storage temperature. Unlike in single pass
- Once the desired storage temperature setpoint is reached, the heat pumps turn off
- If using multiple tanks, each tank must have a sensor. The heat pumps are turned ON by the coldest tank and OFF by the warmest
- This can limit heated volume if not perfectly balanced

Note About Temperature Control

Key differences between multi pass and single pass:

- Single pass is controlling based on the volume change in available hot water
- Multi pass is controlling based on a temperature change at a single point

Single Pass Recirculation Heating – "Swing Tank"

A "Swing Tank" is used with single pass heating to maintain the temperature of the DHW recirculation loop.

- The swing tank is heated in two ways
 - Hot water flows though the tank during DHW usage periods
 - Or an electric element engages for times when there is no HW usage to maintain setpoint temperature.
- Stored temperatures typically range from 140-180°F and mix with 110°F recirculation return at the mixing valve to go out to the system at 120°F
- This system works more efficiently for high DHW usage vs. recirculation losses, by minimizing duration of electric element use
- Not using a swing tank and bringing recirculation water back to the main storage tanks would:
 - Mix with the stored hot water and disrupt stratification
 - Reduce efficiency due to higher hot water temperatures returning to the heat pump
 - Can cause HP to hit maximum EWT limit too often

Multi Pass Recirculation Heating

- In a multi pass system the recirculation loop can be brought back to the main storage tanks
- This must be done in such a manner that all tanks see equal recirculation flow
- Multi pass systems have an additional system efficiency reduction due to the recirculation return water raising the inlet temperature to the heat pump

Performance Data, Heat Pump Limits

- Key to Check What is the heat pump's maximum outlet DHW temperature at the expected low incoming air temperature?
- Many multi-pass synthetic refrigerant heat pumps drop DHW outlet temperature in cold weather, impacting DHW plant performance.

Single Pass Operation Summary

ADVANTAGES

- Higher Output Temps: Up to 180°F
- Maximum Efficiency: COPs 3-5
- Operate to Lower Ambient Temps
- Smaller Pipe Sizes
 - Lower heat losses
 - Lower pressure drops
 - Smaller pumps needed
- Longer Piping Distances

DISADVANTAGES

- Maximum Entering Water Temp Limitations
- Limited Recirculation Piping Options

Multi Pass Operation

ADVANTAGES

• Operates with Smaller Temperature

Differentials

- Simple Recirculation Heating
- Familiar Piping Arrangement

DISADVANTAGES

- Less Efficient Overall
- Limited Low Ambient Operation

(Either the heat pump will shutdown or outlet temperatures will drop to 130°F or below.)

- Limited High Temp Output
- Larger Pipe Sizes
 - Higher heat losses
 - Higher pressure drops
 - Larger pumps needed

Thank You

Laars Heating Systems Electric Portfolio For more info: <u>www.laars.com</u>

